Quantum mechanics 11, Solution 2 : Entanglement (Part 1)
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Sometimes observation kills.
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Problem 1 : Bell States

Consider two spin-1/2 particles A and B with :

[(A)) = eV [0)a + V1) 4

and

1W(B)) = 105 + P 1) 5.

The states |0) and |1) are the eigenstates of the S, = Lo, operator with eigenvalues +7/2 and —h/2,
respectively.

1. Write down the four possible basis states for the composite system |1(A)) ® |[¢(B)) in terms of the
basis vectors {|0)4,|1)a} and {|0)5,|1)5}.

We seek the basis states of the composite space Ha ® Hp where H4 and Hp are the Hilbert spaces of
the A and B labelled systems respectively. There are dimH4 @ Hp =dimHa X dimHp = 2 x 2 = 4 such
basis states. We can enumerate them by simply tensoring every combination of basis states from the two
systems :

{li) ® |j) : |i) € basis of Ha,j € basis of Hp} (1)
These are :
0)4 ©10)p (2)
D, ®[0)p (3)
04 ® 1) (4)
Da® ) (5)

It is straightforward to see this is an orthonal basis, i.e. (iagB|jagr) = 0i,;-

2. The Bell states are two-particle states given by :

@) = % (1004 @ [0)5 + [1)4 ® [1)5)
B = \% (10)4® [0)5 — )4 ® 1))
) = L (0)a® )5+ [1a®[0)5)
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Show that these four Bell states form an orthonormal basis of the Hilbert space of the two spins
H=H,® Hpg.

) (0a®)p—[1)a®[0)B).

In order for a set of states {|1;)} to form an orthonormal basis, we require that :
1. The norm of all the states are 1, i.e. {(¢;]|1;) = 1.
2. The states are orthogonal, i.e. (¢i|1;) ;= 0.

3. The states are complete, i.e. they span the entire space of equal-dimension states, such that any
therein can be expressed as a linear combination of basis states : [p) = " ¢; |¢;) for ¢; € C.

Let us first show property 1 is satisfied. Consider the norm of |®) :

(@F|@+) = = ((00]00) + (11[11) + (00[11) + (11[00)) (6)

DN | =

and since (00|11) = (0]1) (0|1) = 0, it follows that

(3+]3+) = % ((00]00) + (11]11)) = %(1 1) =1 (7)

Similarly, we demonstrate the other states are normalised :

(o~ |@7) :%((00|00> + (11]11) — (11|00) — (00|11)) = %((00|00> + (11]11)) =1 (8)
(Utwt) :%(<1o|10> + (01]01) + (10]01) — (01]10)) = %(<10|10> +(01]01)) =1 (9)
(U |w) :%(<10|10> + (01]01) — (10]01) — (01]10)) = %(<1o|10> +(01]01)) =1 (10)

We can now move to property 2. We will start by showing that |[®*) is orthogonal to all the other elements
of the basis.

(37]a") = %(<00|oo> — (A1[11) + (00]11) — (11]00)) = %(<00|oo> _ i) = %(1 =0 (1)
Similarly for the remaining elements

(Ut]ot) :%(<10|00> + (10[11) + (01|00) + (01]11)) =0 (12)

(W |+) :%(— (10]00) — (10[11) + (01]00) + (01[11)) = 0 (13)

There is no need to explicitly demonstrate the adjoint products like (®F|UT), because (®F|UT) =
(I+|®+)" = 0* = 0. The remaining states are also orthogonal :

(Ut|o) :%(<10|00> — (10[11) 4 (01]00) — (01|11)) =0 (14)
(U~ |@7) :%(— (10]00) + (10[11) + (01|00) — (01]11)) =0 (15)
(0~ |+) :%(f (10[10) — (10]01) + (01]10) + (01]01)) = %(<01|01> — (10[10)) = 0 (16)

We have covered all products, of which there are (3) = 6.

Finally, we must show that the states are complete. For an arbitrary set of vectors, we can do this by
demonstrating they are linearly independent. However, because we have so far demonstrated N = 4 vectors
are orthogonal in an N-dimensional space (dim H g @ Hp = dim H 4 dim Hp = 4), it is already guaranteed
that the vectors are complete. Hooray !



3. Are the four Bell states separable ?

A state |y) is separable if it can be written as a tensor product of states, i.e. [¢)) = |¢) ® |p). For a bell
state (e.g. |®T)) to be separable, we must be able to express it as an instance of a general two-qubit
separable state (a |0) +b|1)) ® (c|0) + d|1)), for a,b, c,d € C. But attempting to do so :

1

ot 00) + 11) = ac|00) + bd |11) + ad |01) + bc |10 17
|>f\>\/§|> |00) 4 bd [11) 4 ad [01) + bc |10) (17)

CLC:%

_ 1
= bd =75 (18)

ad =0

be=0

reveals there is no satisfying solution ; the first two simultaneous equations require that a, ¢, b, d are non-
zero, whereas the final two require some are zero. |[U) is therefore not separable. A similar demonstration
can be performed for the other Bell states.

4. We now consider the Bell state [¥).

(a) What is the probability of measuring —h/2 when measuring the spin 8B of particle B ?

We know that —h/2 is the eigenvalue of S, corresponding to eigenstate |1). We ergo seek the
probability of the rightmost ket (that of particle B) being in the |1) state. To compute this, we
define a projector upon this substate

B
s, =1em). (19)

This non-unitary operator sets all amplitudes of the composite system which do not correspond
to the B particle being in |1), to zero. It imposes no constraint on the state of the A particle, as
per the 1 on the left. The probability we seek is the absolute-value-squared-sum of the remaining
amplitudes, which we can handily compute as

Pyey (—h/2107T) = ( \xIﬁ) (20)

Sz
1 1 1
- (ﬁ o1+ (10|) 1®|1)1]) (ﬁ o)+ 75 |10>) . (21)

We have adopted the rather intimidating notation Pp(A|¢)) to represent the probability of a mea-

surement of operator O (upon state |¢)) yielding its eigenvalue A. Evaluating the above expression
is trivial ; we must be careful to apply the operators upon the correct substates, then simplify our
Dirac notation. We will leverage that

(e ) lay ) = (11a) ) @ (11011 0) ) (22)
|y @ 1) (1) (23)
= (1) (lay ® 1)) (24)

where (1|b) € C is a scalar we commuted to the front of our state. Behold the power of Dirac notation
which lets us arbitrarily reinterpret an outer product upon a ket as a ket and a scalar!

The probability we seek is then

Py (—h/2|0*) = ( s <1<0|) (L& 1)) (%o>|1>+%|1>|0>) (25)

\[
1 1 1
- (\f <0|<1|+f<1<0|) (ﬁ1|o>|1><1|1>+ﬂ1|1>|1><1o>) (26)
(5 01+ g5 (S510m) 7



(b) Let’s assume now that the measurement of the spin B gives us —/%/2. What is the probability
of subsequently measuring +%/2 for the spin A ?

Recall that projector ﬂ(th)/z zeros all amplitudes not corresponding to the measurement outcome of —h/2.

The state ﬂ(fh)/z |U*) (which appeared in our algebra above) is ergo unnormalised :

B 1
H(fh)/Q [oF) = 7 01). (29)
To write the post-measurement state, we must renormalise the result of the projector (multiplying by
some constant 7) so that all remaining amplitudes (absolute-value-squared) sum to 1. In the above case,
where only a single non-zero amplitude remains, this is trivial ;
~(B
n 0%, [wh) = Jou), (30)
and we do not even need to find = /2. But in general, we can appreciate that after the projector, only
amplitudes {a;} which contribute toward Pgs) remain, which we now require to sum (absolute-value-
squared) to 1. We need to scale up these remaining amplitudes by 7 such that that Y, [pa;|? = 1, which
implies
il 1 1
77 = =
VEal [Py (~h/21T+)

. (31)

We can always pick n to be real and positive ; so we divide the state by the square-root of the probability
of the measurement outcome. Handy !

In any case, given our post-measurement state is a basis state |01) = |0) 4 |1) 5, we can immediately read
off that the probability of measuring +%/2 (the eigenvalue associated with state |0)) of spin A is one.
That is, our prior measurement on the B system has collapsed the composite system into a state where
subsequent S. measurement on the A system deterministically yields eigenvalue /2.

5. We now consider |0) = 1|®*) + §|\If_> Is this state correctly normalised ? What is the probability
of obtaining +#/2 upon measuring S'EA) on the first spin?

Let us first check that the state is properly normalised. We have already established that the constituent
states are orthogonal (®|¥~) = 0, and are each correctly normalised, (®*|®T) = (U~|¥~) = 1. Thus
we can quickly show that

(016) = — (2T |@1) + % (U-|wm)y =1. (32)

1
4
Outcome fi/2 is the eigenvalue of S. corresponding to the |0) basis state. Ergo we seek

Pycn (1/216) = = (0](10X0] ©1)16) (33)

We first express |6) in the Z-basis, i.e. in terms of {|0),]1)}®, then apply the projector to discard irrelevant
amplitudes, before taking the sum of absolute-values-squared of the remaining amplitudes (equivalent to



left-applying another bra).

) = Loy + o) (34
S e

(1009 1) 19) = 3= 100) + 5= fon) (36)
3 <9|(|o><o|®1)|> 2f2i <00|00>+2\\/22\\/2 (01]01) (37)
“§tiTy @

We next seek the probability of the other eigenvalue, P 1) (—h/2(0). However, because £h/2 are the only

two possible measurement outcomes (because the one-qubit spin operator has a dimension of 2 and ergo
has only two eigenvectors), we can write down immediately that :

S(A)( h/210) =1-— SEA)(+FL/2|0) (39)
1- % (40)
- % (41)

6. What is the probability of obtaining +7,/2 upon measuring S (the z-axis spin of the first particle)
for all of the four Bell states?

We must be careful not to simply read off the amplitudes of the states, because |0) and |1) are not the
eigenkets of the S, operator, which are instead :

1 1

[+) = \—@ |0) + ﬁ [1)  corresponding to A = fi/2 (42)
1 1

|-) = 7 |0) — 7 [1)  corresponding to A = —h/2 (43)

Fortunately our projector expression will never betray us. The probability of a S, measurement upon
particle A of the |®) state producing eigenvalue /2 is given by

Pyon (1/210%) = (@F| (|4)(+] 2 1) [@*) (44)
- (i[ %) (4 )X+ ®1) ('?2 + H\};) (45)
_(00] (AL ({+[0) [+,0) (1) [+, 1)
_Cf+¢>( e D) (46)
_ {+0) O]+) (1) (1]+)
\f\[ (0[0) N (1]1) (47)
e (48)

where we were immediately able to write down that (0|4) = (1|+) = % and that (00|+, 1) = (0|+) (0[1) =

% x 0 = 0. The converse outcome is merely

1
PS;A>(—h/2|<I>+) =1- Py (h/2|®7) = 3 (49)



Through similar algebra, we can show the probabilities for all the other Bell states are also %

Problem 2 : Composite system of two spin-1/2 particles

Consider the following Hamiltonian operator for two spin-1/2 particles :
H =3, S @ S5 + 1, S @ (B

where ,SA’:(EA) and 52(,’4) are the spin operators for the first spin and gg(CB) and S'?SB) are the spin operators for
the second spin.

1. What are the conditions on the coefficients i, and p, such that H is a valid observable ?

A valid observable is Hermitian, satisfying H=Ht. We ergo require that

o 8098ty 8,08, = (e @ 8oty 8,08, (50)

=u: SIS+ Iy S; ® S’; (by linearity)

=11} S ® Sy + 115 Sy ® 8, (51)

because the spin operators are Hermitian, i.e. ST S,. We must now solve this equation for i, i1, € C. It
may be tempting to instantiate the spin operators as matrices, e.g. S’x =2 (1) (1) , and solve the system

as a set of simultaneous equations. However, we can instead leverage that the Pauli operators form a basis
for all one-qubit operators; by extension, so too do the spin operators. The operator S, ® Sgg is a tensor
of basis states, so is itself a basis state of the composite system. As such, S, ® 8, and Sy ® Sy are distinct
basis states, and are ergo orthogonal. We know from linear algebra that

av+bu=cv+du, vliu = a=c b=d (52)

Our spin-operator coefficients ergo satisfy

r = *a x R7
Iz “jj . M€ (53)
Py = Iy py €R.

2. Write down the matrix elements of H in the basis of S, (i.e. {|0),[1)}%2).

We will treat [0) and |1) as the basis of S, so that we can write the spin-1/2 operator matrices as
Pauli matrices, neglecting the //2 coefficients. To evaluate H as a matrix, we simply substitute the spin
operators with their matrix forms, and evaluate the tensor product as the matrix Kronecker product.

gzﬂwgw®‘§w+uy‘§y®gy (54)
we (Loc) e (Lon) v (Lon) o (o) (55)
_ 0 1 0 1 0 —i 0 —i
=i a)o (1 0) e (7 0) =0 0) &

0 0 0 ey
— 0 0 /Lr+ﬂy 0
o 0 o+ [y 0 0 (57)
o py 0 0 0



3. Diagonalize the Hamiltonian in this basis and find its eigenvalues and the corresponding eigenvectors.

There are many techniques to find the eigenvalues and eigenvectors of a generic matrix. Our matrix is
infact special; it is anti-diagonal which permits us to use the many tricks described here. However, we
shall proceed as if H was an arbitrary matrix.

Let a,b,c,d € C. An ecigenstate [¢) = (a b ¢ d)T of the Hermitian matrix H, with corresponding
eigenvalue A € R, satisfies

H|p) = A|o) (58)
0 0 0 fa — [y a a
0 0 o+ fhy 0 bl b
0 g F [y 0 0 cl| A c (59)
Ha — [y 0 0 0 d d

This is a set of four simultaneous equations which we expect to admit four distinct solutions (the dimension
of the composite Hilbert space), which we can find algebraically.

(Ha = py) d = Aa
(Ha + py) b= Ac
(Ha — py)a = Ad

Let us assume that |pg| # |uy| so that we do not have to worry about the null-factor scenario when
Ho £ py = 0. We also of course assume A # 0 to avoid the trivial and irrelevant case of |¢) = 0. These
simultaneous equations can be arranged to

a = (ftz — f1y) d/A
b= (o + py) /A
b=Xc/(pa + piy)
a=Xd/(pz = 1y)

(61)

Note we were careful to only ever divide by A or p, £ 1y, which we know are non-zero. Dividing by a, b, ¢, d
could only lead us to solutions where these variables are assumed non-zero, so we would neglect some valid
solutions (and likely fail to find all eigenstates), else we would have committed an invalid division by zero.

The middle two equations together imply
(Mw + My) C//\ = )‘C/(Mw + My) (62)
which implies either :

c=0 = b=0 or (Nm+ﬂy)2:>‘2 == )‘:i(ﬂxJF,“y)' (63)

The outer two equations together imply
(o = py) AN = A/ (pz — p1y) (64)
which implies either
d=0 = a=0, or (g —py)?=X = A==2(u — ). (65)

These constraints are consistent when we assert ¢ = b = 0 and user the latter found eigenvalues, and when
we asset a = d = 0 and use the former found eigenvalues. We visit these four scenarios in-turn, each of
which should allow us to solve for one eigenstate.


https://math.stackexchange.com/questions/921579/quick-way-to-find-eigenvalues-of-anti-diagonal-matrix

— When ¢ =0b=0and A = p; — 4y, the outer two equations imply

(o = piy) &/ (pz = py) = (pe = piy) A/ (pta = pry) = d =d, (66)

which tells us d is unconstrained. We can ergo set it to any value we wish, to inform a. In linear
algebra, we would sensibly choose d = 1 but we have an additional constraint on our eigenstates;
that they are normalised (i.e. valid L2 states). As such, we choose d = % == a= % Our first
eigenstate and corresponding eigenvalue is :

p)=—=(1 0 0 1, N =p—p (67)

Sl

— When ¢ =b=0and A = —(pz — py), the outer two equations imply

(e = py) A/ (pa = pry) = = (p = 1) A/ (pp — p1yy) = d=d (68)

where d is again unconstrained. We arbitarily choose d = —%, which yields a = —d =

our first coefficient, a, positive). Our second eigenstate and corresponding eigenvalue is :

L (making

S

2

f2) = —=(1 0 0 =1)", Np=—ps+py (69)

2

-

— When a =d =0 and X\ = p + 1y, through identical working as above (now using the middle two
equations), we discover

1
lp3) = NG

— When a =d =0 and A = —pu, — py, we find

0 1 1 07, N=ptn (70)

=50 1 -1 07, A=y (71)

Our general state |¢) = (a b ¢ d)T corresponds to basis ordering
|¢) = a|00) + b]01) + ¢|10) + d|11). (72)
Our eigenstates can therefore be expressed as

1

62) = = (00) + 1) = [@7)., (73)
1 _

02) = = (00) = 1)) = [27) (74)

65 = % (lo1) + 110)) = |w*), (75)

64) = — (J01) — [10)) = [¥7). (76)

S5
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We have found that the eigenstates of H = p, Sy ® Sy + Iy Sy ® S*y are the four Bell states!
4. Are the eigenvectors of the Hamiltonian separable between the two particles ?

The eigenstates correspond to the Bell states, which we have already established are not separable. Recall
that we assumed |p,| # |py|. What happens when we relax this assumption ?



