
2024

Quantum mechanics II, Solution 2 : Entanglement (Part 1)
TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard Puig,

Sacha Lerch, Samy Conus, Tyson Jones
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Problem 1 : Bell States

Consider two spin-1/2 particles A and B with :

|ψ(A)⟩ = c
(A)
0 |0⟩A + c

(A)
1 |1⟩A

and

|ψ(B)⟩ = c
(B)
0 |0⟩B + c

(B)
1 |1⟩B .

The states |0⟩ and |1⟩ are the eigenstates of the Ŝz = ℏ
2σz operator with eigenvalues +ℏ/2 and −ℏ/2,

respectively.

1. Write down the four possible basis states for the composite system |ψ(A)⟩ ⊗ |ψ(B)⟩ in terms of the
basis vectors {|0⟩A, |1⟩A} and {|0⟩B , |1⟩B}.

We seek the basis states of the composite space HA ⊗ HB where HA and HB are the Hilbert spaces of
the A and B labelled systems respectively. There are dim HA ⊗ HB = dim HA × dim HB = 2 × 2 = 4 such
basis states. We can enumerate them by simply tensoring every combination of basis states from the two
systems :

{|i⟩ ⊗ |j⟩ : |i⟩ ∈ basis of HA, j ∈ basis of HB} (1)

These are :

|0⟩A ⊗ |0⟩B (2)
|1⟩A ⊗ |0⟩B (3)
|0⟩A ⊗ |1⟩B (4)
|1⟩A ⊗ |1⟩B (5)

It is straightforward to see this is an orthonal basis, i.e. ⟨iA⊗B |jA⊗B⟩ = δi,j .

2. The Bell states are two-particle states given by :

|Φ+⟩ = 1√
2

(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

|Φ−⟩ = 1√
2

(|0⟩A ⊗ |0⟩B − |1⟩A ⊗ |1⟩B)

|Ψ+⟩ = 1√
2

(|0⟩A ⊗ |1⟩B + |1⟩A ⊗ |0⟩B)
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|Ψ−⟩ = 1√
2

(|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B) .

Show that these four Bell states form an orthonormal basis of the Hilbert space of the two spins
H = HA ⊗HB .

In order for a set of states {|ψi⟩} to form an orthonormal basis, we require that :
1. The norm of all the states are 1, i.e. ⟨ψi|ψi⟩ = 1.
2. The states are orthogonal, i.e. ⟨ψi|ψj⟩|i ̸=j = 0.
3. The states are complete, i.e. they span the entire space of equal-dimension states, such that any

therein can be expressed as a linear combination of basis states : |ψ⟩ =
∑
ci |ψi⟩ for ci ∈ C.

Let us first show property 1 is satisfied. Consider the norm of |Φ+⟩ :〈
Φ+∣∣Φ+〉

= 1
2 (⟨00|00⟩ + ⟨11|11⟩ + ⟨00|11⟩ + ⟨11|00⟩) (6)

and since ⟨00|11⟩ = ⟨0|1⟩ ⟨0|1⟩ = 0, it follows that〈
Φ+∣∣Φ+〉

= 1
2 (⟨00|00⟩ + ⟨11|11⟩) = 1

2(1 + 1) = 1. (7)

Similarly, we demonstrate the other states are normalised :〈
Φ−∣∣Φ−〉

=1
2(⟨00|00⟩ + ⟨11|11⟩ − ⟨11|00⟩ − ⟨00|11⟩) = 1

2(⟨00|00⟩ + ⟨11|11⟩) = 1 (8)〈
Ψ+∣∣Ψ+〉

=1
2(⟨10|10⟩ + ⟨01|01⟩ + ⟨10|01⟩ − ⟨01|10⟩) = 1

2(⟨10|10⟩ + ⟨01|01⟩) = 1 (9)〈
Ψ−∣∣Ψ−〉

=1
2(⟨10|10⟩ + ⟨01|01⟩ − ⟨10|01⟩ − ⟨01|10⟩) = 1

2(⟨10|10⟩ + ⟨01|01⟩) = 1 (10)

We can now move to property 2. We will start by showing that |Φ+⟩ is orthogonal to all the other elements
of the basis.〈

Φ−∣∣Φ+〉
= 1

2(⟨00|00⟩ − ⟨11|11⟩ + ⟨00|11⟩ − ⟨11|00⟩) = 1
2(⟨00|00⟩ − ⟨11|11⟩) = 1

2(1 − 1) = 0 (11)

Similarly for the remaining elements〈
Ψ+∣∣Φ+〉

=1
2(⟨10|00⟩ + ⟨10|11⟩ + ⟨01|00⟩ + ⟨01|11⟩) = 0 (12)〈

Ψ−∣∣Φ+〉
=1

2(− ⟨10|00⟩ − ⟨10|11⟩ + ⟨01|00⟩ + ⟨01|11⟩) = 0 (13)

There is no need to explicitly demonstrate the adjoint products like ⟨Φ+|Ψ+⟩, because ⟨Φ+|Ψ+⟩ =
⟨Ψ+|Φ+⟩∗ = 0∗ = 0. The remaining states are also orthogonal :〈

Ψ+∣∣Φ−〉
=1

2(⟨10|00⟩ − ⟨10|11⟩ + ⟨01|00⟩ − ⟨01|11⟩) = 0 (14)〈
Ψ−∣∣Φ−〉

=1
2(− ⟨10|00⟩ + ⟨10|11⟩ + ⟨01|00⟩ − ⟨01|11⟩) = 0 (15)〈

Ψ−∣∣Φ+〉
=1

2(− ⟨10|10⟩ − ⟨10|01⟩ + ⟨01|10⟩ + ⟨01|01⟩) = 1
2(⟨01|01⟩ − ⟨10|10⟩) = 0 (16)

We have covered all products, of which there are
(4

2
)

= 6.

Finally, we must show that the states are complete. For an arbitrary set of vectors, we can do this by
demonstrating they are linearly independent. However, because we have so far demonstrated N = 4 vectors
are orthogonal in an N -dimensional space (dim HA ⊗HB = dim HA dim HB = 4), it is already guaranteed
that the vectors are complete. Hooray !
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3. Are the four Bell states separable ?

A state |ψ⟩ is separable if it can be written as a tensor product of states, i.e. |ψ⟩ = |ϕ⟩ ⊗ |φ⟩. For a bell
state (e.g. |Φ+⟩) to be separable, we must be able to express it as an instance of a general two-qubit
separable state (a |0⟩ + b |1⟩) ⊗ (c |0⟩ + d |1⟩), for a, b, c, d ∈ C. But attempting to do so :∣∣Φ+〉

= 1√
2

|00⟩ + 1√
2

|11⟩ ≡ ac |00⟩ + bd |11⟩ + ad |01⟩ + bc |10⟩ (17)

=⇒


ac = 1√

2
bd = 1√

2
ad = 0
bc = 0

(18)

reveals there is no satisfying solution ; the first two simultaneous equations require that a, c, b, d are non-
zero, whereas the final two require some are zero. |Ψ+⟩ is therefore not separable. A similar demonstration
can be performed for the other Bell states.

4. We now consider the Bell state |Ψ+⟩.
(a) What is the probability of measuring −ℏ/2 when measuring the spin Ŝ

(B)
z of particle B ?

We know that −ℏ/2 is the eigenvalue of Ŝz corresponding to eigenstate |1⟩. We ergo seek the
probability of the rightmost ket (that of particle B) being in the |1⟩ state. To compute this, we
define a projector upon this substate

Π̂(B)
−ℏ/2 = 1 ⊗ |1⟩⟨1| . (19)

This non-unitary operator sets all amplitudes of the composite system which do not correspond
to the B particle being in |1⟩, to zero. It imposes no constraint on the state of the A particle, as
per the 1 on the left. The probability we seek is the absolute-value-squared-sum of the remaining
amplitudes, which we can handily compute as

P
Ŝ

(B)
z

(−ℏ/2|Ψ+) =
〈
Ψ+∣∣Π̂(B)

−ℏ/2
∣∣Ψ+〉

(20)

=
(

1√
2

⟨01| + 1√
2

⟨10|
)

(1 ⊗ |1⟩⟨1|)
(

1√
2

|01⟩ + 1√
2

|10⟩
)
. (21)

We have adopted the rather intimidating notation PÔ(λ|ψ) to represent the probability of a mea-
surement of operator Ô (upon state |ψ⟩) yielding its eigenvalue λ. Evaluating the above expression
is trivial ; we must be careful to apply the operators upon the correct substates, then simplify our
Dirac notation. We will leverage that(

1 ⊗ |1⟩⟨1|
)

|a⟩ |b⟩ =
(

1 |a⟩
)

⊗
(

|1⟩⟨1| |b⟩
)

(22)

= |a⟩ ⊗ |1⟩ ⟨1|b⟩ (23)

= ⟨1|b⟩
(

|a⟩ ⊗ |1⟩
)

(24)

where ⟨1|b⟩ ∈ C is a scalar we commuted to the front of our state. Behold the power of Dirac notation
which lets us arbitrarily reinterpret an outer product upon a ket as a ket and a scalar !

The probability we seek is then

P
Ŝ

(B)
z

(−ℏ/2|Ψ+) =
(

1√
2

⟨0| ⟨1| + 1√
2

⟨1| ⟨0|
)

(1 ⊗ |1⟩⟨1|)
(

1√
2

|0⟩ |1⟩ + 1√
2

|1⟩ |0⟩
)

(25)

=
(

1√
2

⟨0| ⟨1| + 1√
2

⟨1| ⟨0|
) (

1√
2

1 |0⟩ |1⟩ ⟨1|1⟩ + 1√
2

1 |1⟩ |1⟩ ⟨1|0⟩
)

(26)

=
(

1√
2

⟨0| ⟨1| + 1√
2

⟨1| ⟨0|
) (

1√
2

|0⟩ |1⟩
)

(27)

= 1√
2

1√
2

⟨01|01⟩ = 1
2 . (28)
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(b) Let’s assume now that the measurement of the spin B gives us −ℏ/2. What is the probability
of subsequently measuring +ℏ/2 for the spin A ?

Recall that projector Π̂(B)
−ℏ/2 zeros all amplitudes not corresponding to the measurement outcome of −ℏ/2.

The state Π̂(B)
−ℏ/2 |Ψ+⟩ (which appeared in our algebra above) is ergo unnormalised :

Π̂(B)
−ℏ/2

∣∣Ψ+〉
= 1√

2
|01⟩ . (29)

To write the post-measurement state, we must renormalise the result of the projector (multiplying by
some constant η) so that all remaining amplitudes (absolute-value-squared) sum to 1. In the above case,
where only a single non-zero amplitude remains, this is trivial ;

η Π̂(B)
−ℏ/2

∣∣Ψ+〉
= |01⟩ , (30)

and we do not even need to find η =
√

2. But in general, we can appreciate that after the projector, only
amplitudes {αi} which contribute toward P

Ŝ
(B)
z

remain, which we now require to sum (absolute-value-
squared) to 1. We need to scale up these remaining amplitudes by η such that that

∑
i |ηαi|2 = 1, which

implies

|η| = 1√∑
i |αi|2

= 1√
P

Ŝ
(B)
z

(−ℏ/2|Ψ+)
. (31)

We can always pick n to be real and positive ; so we divide the state by the square-root of the probability
of the measurement outcome. Handy !

In any case, given our post-measurement state is a basis state |01⟩ = |0⟩A |1⟩B , we can immediately read
off that the probability of measuring +ℏ/2 (the eigenvalue associated with state |0⟩) of spin A is one.
That is, our prior measurement on the B system has collapsed the composite system into a state where
subsequent Ŝz measurement on the A system deterministically yields eigenvalue ℏ/2.

5. We now consider |θ⟩ = 1
2 |Φ+⟩ +

√
3

2 |Ψ−⟩. Is this state correctly normalised ? What is the probability
of obtaining ±ℏ/2 upon measuring Ŝ(A)

z on the first spin ?

Let us first check that the state is properly normalised. We have already established that the constituent
states are orthogonal ⟨Φ+|Ψ−⟩ = 0, and are each correctly normalised, ⟨Φ+|Φ+⟩ = ⟨Ψ−|Ψ−⟩ = 1. Thus
we can quickly show that

⟨θ|θ⟩ = 1
4

〈
Φ+∣∣Φ+〉

+ 3
4

〈
Ψ−∣∣Ψ−〉

= 1. (32)

Outcome ℏ/2 is the eigenvalue of Ŝz corresponding to the |0⟩ basis state. Ergo we seek

P
Ŝ

(A)
z

(ℏ/2|θ) = = ⟨θ|
(

|0⟩⟨0| ⊗ 1
)

|θ⟩ . (33)

We first express |θ⟩ in the Ẑ-basis, i.e. in terms of {|0⟩ , |1⟩}⊗, then apply the projector to discard irrelevant
amplitudes, before taking the sum of absolute-values-squared of the remaining amplitudes (equivalent to
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left-applying another bra).

|θ⟩ = 1
2 |Φ+⟩ +

√
3

2 |Ψ−⟩ (34)

= 1
2

(
|00⟩√

2
+ |11⟩√

2

)
+

√
3

2

(
|01⟩√

2
− |10⟩√

2

)
(35)

∴
(

|0⟩⟨0| ⊗ 1
)

|θ⟩ = 1
2
√

2
|00⟩ + 3

2
√

2
|01⟩ (36)

∴ ⟨θ|
(

|0⟩⟨0| ⊗ 1
)

|θ⟩ = 1
2
√

2
1

2
√

2
⟨00|00⟩ +

√
3

2
√

2

√
3

2
√

2
⟨01|01⟩ (37)

= 1
8 + 3

8 = 1
2 . (38)

We next seek the probability of the other eigenvalue, P
Ŝ

(A)
z

(−ℏ/2|θ). However, because ±ℏ/2 are the only
two possible measurement outcomes (because the one-qubit spin operator has a dimension of 2 and ergo
has only two eigenvectors), we can write down immediately that :

P
Ŝ

(A)
z

(−ℏ/2|θ) = 1 − P
Ŝ

(A)
z

(+ℏ/2|θ) (39)

= 1 − 1
2 (40)

= 1
2 . (41)

6. What is the probability of obtaining ±ℏ/2 upon measuring Ŝ(A)
x (the x-axis spin of the first particle)

for all of the four Bell states ?

We must be careful not to simply read off the amplitudes of the states, because |0⟩ and |1⟩ are not the
eigenkets of the Ŝx operator, which are instead :

|+⟩ = 1√
2

|0⟩ + 1√
2

|1⟩ corresponding to λ = ℏ/2 (42)

|−⟩ = 1√
2

|0⟩ − 1√
2

|1⟩ corresponding to λ = −ℏ/2 (43)

Fortunately our projector expression will never betray us. The probability of a Ŝx measurement upon
particle A of the |Φ⟩ state producing eigenvalue ℏ/2 is given by

P
S

(A)
x

(ℏ/2|Φ+) =
〈
Φ+∣∣ (

|+⟩⟨+| ⊗ 1
) ∣∣Φ+〉

(44)

=
(

⟨00|√
2

+ ⟨11|√
2

) (
|+⟩⟨+| ⊗ 1

) (
|00⟩√

2
+ |11⟩√

2

)
(45)

=
(

⟨00|√
2

+ ⟨11|√
2

) (
⟨+|0⟩ |+, 0⟩√

2
+ ⟨+|1⟩ |+, 1⟩√

2

)
(46)

= ⟨+|0⟩ ⟨0|+⟩√
2

√
2

⟨0|0⟩ + ⟨+|1⟩ ⟨1|+⟩√
2

√
2

⟨1|1⟩ (47)

= 1
4 + 1

4 = 1
2 (48)

where we were immediately able to write down that ⟨0|+⟩ = ⟨1|+⟩ = 1√
2 , and that ⟨00|+, 1⟩ = ⟨0|+⟩ ⟨0|1⟩ =

1√
2 × 0 = 0. The converse outcome is merely

P
S

(A)
x

(−ℏ/2|Φ+) = 1 − P
S

(A)
x

(ℏ/2|Φ+) = 1
2 . (49)

5



Through similar algebra, we can show the probabilities for all the other Bell states are also 1
2 .

Problem 2 : Composite system of two spin-1/2 particles

Consider the following Hamiltonian operator for two spin-1/2 particles :

Ĥ = µxŜ
(A)
x ⊗ Ŝ(B)

x + µyŜ
(A)
y ⊗ Ŝ(B)

y

where Ŝ(A)
x and Ŝ(A)

y are the spin operators for the first spin and Ŝ(B)
x and Ŝ(B)

y are the spin operators for
the second spin.

1. What are the conditions on the coefficients µx and µy such that Ĥ is a valid observable ?

A valid observable is Hermitian, satisfying Ĥ = Ĥ†. We ergo require that

µx Ŝx ⊗ Ŝx + µy Ŝy ⊗ Ŝy =
(
µx Ŝx ⊗ Ŝx + µy Ŝy ⊗ Ŝy

)†
(50)

= µ∗
x Ŝ

†
x ⊗ Ŝ†

x + µ∗
y Ŝ

†
y ⊗ Ŝ†

y (by linearity)

= µ∗
x Ŝx ⊗ Ŝx + µ∗

y Ŝy ⊗ Ŝy (51)

because the spin operators are Hermitian, i.e. Ŝ†
x = Ŝx. We must now solve this equation for µx, µy ∈ C. It

may be tempting to instantiate the spin operators as matrices, e.g. Ŝx = ℏ
2

(
0 1
1 0

)
, and solve the system

as a set of simultaneous equations. However, we can instead leverage that the Pauli operators form a basis
for all one-qubit operators ; by extension, so too do the spin operators. The operator Ŝx ⊗ Ŝx is a tensor
of basis states, so is itself a basis state of the composite system. As such, Ŝx ⊗ Ŝx and Ŝy ⊗ Ŝy are distinct
basis states, and are ergo orthogonal. We know from linear algebra that

av + bu = cv + du, v ⊥ u =⇒ a = c, b = d (52)

Our spin-operator coefficients ergo satisfy{
µx = µ∗

x,

µy = µ∗
y

=⇒

{
µx ∈ R,

µy ∈ R.
(53)

2. Write down the matrix elements of Ĥ in the basis of Ŝz (i.e. {|0⟩ , |1⟩}⊗2).

We will treat |0⟩ and |1⟩ as the basis of Ŝz, so that we can write the spin-1/2 operator matrices as
Pauli matrices, neglecting the ℏ/2 coefficients. To evaluate Ĥ as a matrix, we simply substitute the spin
operators with their matrix forms, and evaluate the tensor product as the matrix Kronecker product.

Ĥ = µx Ŝx ⊗ Ŝx + µy Ŝy ⊗ Ŝy (54)

= µx

(
ℏ
2 σ̂x

)
⊗

(
ℏ
2 σ̂x

)
+ µy

(
ℏ
2 σ̂y

)
⊗

(
ℏ
2 σ̂y

)
(55)

≡ µx

(
0 1
1 0

)
⊗

(
0 1
1 0

)
+ µy

(
0 −i
i 0

)
⊗

(
0 −i
i 0

)
(56)

=


0 0 0 µx − µy

0 0 µx + µy 0
0 µx + µy 0 0

µx − µy 0 0 0

 . (57)
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3. Diagonalize the Hamiltonian in this basis and find its eigenvalues and the corresponding eigenvectors.

There are many techniques to find the eigenvalues and eigenvectors of a generic matrix. Our matrix is
infact special ; it is anti-diagonal which permits us to use the many tricks described here. However, we
shall proceed as if Ĥ was an arbitrary matrix.

Let a, b, c, d ∈ C. An eigenstate |ϕ⟩ =
(
a b c d

)T of the Hermitian matrix Ĥ, with corresponding
eigenvalue λ ∈ R, satisfies

Ĥ |ϕ⟩ = λ |ϕ⟩ (58)

∴


0 0 0 µx − µy

0 0 µx + µy 0
0 µx + µy 0 0

µx − µy 0 0 0



a
b
c
d

 = λ


a
b
c
d

 . (59)

This is a set of four simultaneous equations which we expect to admit four distinct solutions (the dimension
of the composite Hilbert space), which we can find algebraically.

(µx − µy) d = λ a

(µx + µy) c = λ b

(µx + µy) b = λ c

(µx − µy) a = λ d

. (60)

Let us assume that |µx| ̸= |µy| so that we do not have to worry about the null-factor scenario when
µx ± µy = 0. We also of course assume λ ̸= 0 to avoid the trivial and irrelevant case of |ϕ⟩ = 0. These
simultaneous equations can be arranged to

a = (µx − µy) d/λ
b = (µx + µy) c/λ
b = λ c/(µx + µy)
a = λ d/(µx − µy)

(61)

Note we were careful to only ever divide by λ or µx ±µy, which we know are non-zero. Dividing by a, b, c, d
could only lead us to solutions where these variables are assumed non-zero, so we would neglect some valid
solutions (and likely fail to find all eigenstates), else we would have committed an invalid division by zero.

The middle two equations together imply

(µx + µy) c/λ = λ c/(µx + µy) (62)

which implies either :

c = 0 =⇒ b = 0 or (µx + µy)2 = λ2 =⇒ λ = ±(µx + µy). (63)

The outer two equations together imply

(µx − µy) d/λ = λ d/(µx − µy) (64)

which implies either

d = 0 =⇒ a = 0, or (µx − µy)2 = λ2 =⇒ λ = ±(µx − µy). (65)

These constraints are consistent when we assert c = b = 0 and user the latter found eigenvalues, and when
we asset a = d = 0 and use the former found eigenvalues. We visit these four scenarios in-turn, each of
which should allow us to solve for one eigenstate.
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— When c = b = 0 and λ = µx − µy, the outer two equations imply

(µx − µy) d/(µx − µy) = (µx − µy) d/(µx − µy) =⇒ d = d, (66)

which tells us d is unconstrained. We can ergo set it to any value we wish, to inform a. In linear
algebra, we would sensibly choose d = 1 but we have an additional constraint on our eigenstates ;
that they are normalised (i.e. valid L2 states). As such, we choose d = 1√

2 =⇒ a = 1√
2 . Our first

eigenstate and corresponding eigenvalue is :

|ϕ1⟩ = 1√
2

(
1 0 0 1

)T
, λ1 = µx − µy (67)

— When c = b = 0 and λ = −(µx − µy), the outer two equations imply

−(µx − µy) d/(µx − µy) = −(µx − µy) d/(µx − µy) =⇒ d = d (68)

where d is again unconstrained. We arbitarily choose d = − 1√
2 , which yields a = −d = 1√

2 (making
our first coefficient, a, positive). Our second eigenstate and corresponding eigenvalue is :

|ϕ2⟩ = 1√
2

(
1 0 0 −1

)T
, λ2 = −µx + µy (69)

— When a = d = 0 and λ = µx + µy, through identical working as above (now using the middle two
equations), we discover

|ϕ3⟩ = 1√
2

(
0 1 1 0

)T
, λ3 = µx + µy (70)

— When a = d = 0 and λ = −µx − µy, we find

|ϕ4⟩ = 1√
2

(
0 1 −1 0

)T
, λ4 = −µx − µy (71)

Our general state |ϕ⟩ =
(
a b c d

)T corresponds to basis ordering

|ϕ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩ . (72)

Our eigenstates can therefore be expressed as

|ϕ1⟩ = 1√
2

(|00⟩ + |11⟩) =
∣∣Φ+〉

, (73)

|ϕ2⟩ = 1√
2

(|00⟩ − |11⟩) =
∣∣Φ−〉

, (74)

|ϕ3⟩ = 1√
2

(|01⟩ + |10⟩) =
∣∣Ψ+〉

, (75)

|ϕ4⟩ = 1√
2

(|01⟩ − |10⟩) =
∣∣Ψ−〉

. (76)

We have found that the eigenstates of Ĥ = µx Ŝx ⊗ Ŝx + µy Ŝy ⊗ Ŝy are the four Bell states !

4. Are the eigenvectors of the Hamiltonian separable between the two particles ?

The eigenstates correspond to the Bell states, which we have already established are not separable. Recall
that we assumed |µx| ≠ |µy|. What happens when we relax this assumption ?
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